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Abstract-The complete asymptotic expansions of four homogeneous solutions, and a particular
solution of toroidal shells, based on Novozhilov's thin shell equations, are given, which are valid
for the stress and deformation of toroidal shells of circular cross section subjected to nonsymmetric
loadings.
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tangential and circumferential angles of shell
I + Ii sin fJ
principal coordinates
Lame's coefficients
principal radii of curvature
tangential, circumferential and normal loading components
stress resultants, shown in Fig. I
stress couples, shown in Fig. I
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Fig. I. Notation of force resultants and moment resultants in shell coordinates.
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1. INTRODUCTION

The toroidal shell is characterized by the existence of the transition points at 0 = 0 and Te.

Therefore, the displacement at this point is discontinuous in the membrane theory and
bending moments always exist. This feature makes it difficult to obtain the asymptotic
solutions.

The toroidal shell problems are generally divided into two cases to be investigated
according to the loadings; axisymmetric (m = 0) or nonsymmetric (m -# 0). In the present
paper, only the latter is discussed.

The case of axisymmetric loadings has been investigated for many years. However,
there are few papers on the case ofnonsymmetric loadings. Steele (1959) solved this problem
for the first time in his dissertation at Stanford University. He derived the nonhomogeneous
integro-differential equation of the fourth order and obtained an asymptotic solution for
large values of p. = JI2(1-v2)r~/(Roh) and for m 3/(.Jli(ro/h)) « 1. The latter condition
restricted his solution adaptable for only lower harmonics m = 0, 1, 2....

In the present investigation, it is identified that the comparison equation is, in fact,
the certain generalization of Airy's equation. Therefore, the generalized Airy functions,
introduced by Drazin and Reid (1981), are used to obtain successfully the complete asymp­
totic expansions of all four homogeneous solutions and a particular solution. They are
numerically satisfactory, uniformly valid and they satisfy the accuracy of the theory of thin
shells.

As for the case ofaxisymmetric loading, a novel solution has been found by the author.
The paper will be dispatched separately. The goal of the author is to obtain a unified
solution for the toroidal shells under arbitrary loadings.

The solution of toroidal shells with nonsymmetric loading corresponds to a transition
point problem for differential equations of fourth order. The transition point of higher
order occurs in shell vibrations. Zhang and Zhang (1991) have obtained the complete
uniformly valid solutions.

2. FUNDAMENTAL EQUATIONS

Novozhilov (1951) has given the thin shell equations in the complex form

For the case of the toroidal shells ofcircular cross section, as shown in Fig. 2, the parameters
are now

Furthermore, with the introduction of a new complex variable

(3)

eqn (1) can be rewritten as
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Fig. 2. Toroidal shells of circular cross section.

where

Eliminating 0 from eqn (4), we obtain
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e

where

(5)

(6)

(7)

The loadings and all the variables in eqn (6) can be expanded in Fourier series along the
circular direction of toroidal shells. We let their mth order harmonic components be
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Inserting eqn (8) in eqns (6) and (7), we obtain the equation

4d4fm 3 d
3
f m [J1.YO 3 2 2 2 2 2 2 Jd

2
f mU --+8J1.C1 cosO--+ i-a sinO+a (l+14J1. -2J1. m -4J1.sinO-19J1. sin 0) --

W ~ £ ~

+ [iJ1.;O a2cos 0(3 + 7J1. sin 0) + J1.a cos 0(2 + 4J1.2 -4J1.2m2- 6J1. sin 0 - 12J1.2 sin20)J d~m

+ {iJ1.;O u[7J1. - J1.m 2+ (9J1.2 - J1.2 m2- 2) sin 0 -12J1. sin2e - 12J1.2 sin3 e]

+ (J1.4m4- J1.4m2+ 2J1.3m2sin 0 + 2J1.4m2sin2OJ} f m= Fm(O)

where

(8)

(9)

2 {d( 33) d[2
d

J }- .J1. Yo J1. Yoa Yo a 2 . 2
Fm(O) = -I-a - dO qnm--.- - -2- dO ----;--e dO (qnm a sme) -m Yoaqnm .

£ Y~U J1.3 sm 0 J1. a sm

(10)

In terms of f m , the mth order harmonic components of stress resultants are expressed
as

£U
2

(d 3 f ) £a (d 2f ) (d f )mSm = - 1m __m + 4 - cos elm __m + u sin 0 Re dem

J1.Y0 d03 Yo de2
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The mth order harmonic components of displacements Urn and Wrn are the respective solu­
tions of the equation

(12)

and the equation

(13)

The displacement Vrn is

ro(f {8(f . (d 2 fm) 8/l (dfm) .-mVrn=-h -(I+v)Im -- +(I+v)-cosOIm dO +[1+(1+v)/lsmO] Re(Tm )
/lE ro d02 Yo

(14)

For the asymptotic solutions of eqn (9) to be valid uniformly in the entire toroid, we
define the transformation by

z = [_3 re ( sin ~ )112 dOJ2
1
3

2m2 Jo I +/lsmO

and

_ m
3

[ sin 0 J- 314
Trn = . 1/1.

(1 + /l sin 0)2 (1 + /l sm O)z

Thus, eqn (9) is transformed to

(15)

(16)

(17)

in which A is a large complex-valued parameter, L l , L 2 , L3 , L4 , L s, Gn and G< are the real­
valued functions of z and are analytic at the transition point z = O. The nonhomogeneous
term G< vanishes if the loadings have only normal components. The expressions for these
coefficients are in Appendix B. However, it is necessary to indicate that
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L 1(0) = 3. (18)

Equation (17) is the fundamental equation. The present derivation is a modified version
of the account given by Xia and Zhang (1986).

3. THE FORM OF THE ASYMPTOTIC EXPANSION

We find first the "local solutions" which are valid only in the vicinity of the transition
point z = o. It is evident that they are reduced by letting z -+ 0 in the solutions which are
valid everywhere in the entire toroid. Therefore, they can help us infer the extensive forms
of the uniformly valid solutions.

In order to find the local solutions we derive the "local equation" which is valid also
only in the vicinity of the transition point by letting

(19)

and by using the constants

instead of the correspondent coefficients L 1(z), L 2(z) ... Gt(z), in the form

(21)

where use has been made of eqn (18). Primes indicate differentiation with respect to (. The
terms of order O(A. -8/3) are omitted, since, they are beyond the accuracy of the theory of
thin shells.

3.1. Expansions of the homogeneous equations
Substituting

Ct)

l/I(CA.) = L (A.- 2
/
3Yl/IiO

n=O

(22)

into the homogeneous part of eqn (21), equating coefficients of like powers of A. -2/3, we
obtain

lfITll/Jo = 0 (23)

(24)

where all coefficients with negative subscripts are defined to be zero. The differential
operator If is of the form

(25)

The fourth order comparison eqn (23) has four homogeneous solutions. As can be
seen in Appendix A, they are

(26)

where k = 1,2.
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The higher approximation can be found by substituting eqn (26) into eqn (24). For
example, substituting ljlbk) into eqn (24) of n = I and comparing with eqn (A6) ofp = -I,
we obtain

(27)

Then, substituting t/J&k) and t/J\k) into eqn (24) ofn = 2, noting eqn (AS) and comparing with
eqn (A6) of p =°or p = - 3, respectively, we obtain

(28)

where Ak+I(C, -2,0) has been used according to eqn (A24), instead of Ak+1(C, -2). More­
over, substituting t/J&k), t/J\k) and t/J~k) into eqn (24) of n = 3, noting eqn (AS) and comparing
with eqn (A6) of p = I and eqn (A22) of p = - 2, q = I, respectively, we obtain

(29)

Thus, we can obtain t/J!f), t/J~k) ... by repeating in the same way. Substituting all of them
into eqn (22) and using eqns (Al2) and (A23), we conclude that the formal expansions are
of the form

t/J(k)(C,).) = aAk+I(C, -1)+).-2/3PAk+l(C,0)+).-4/3yAk+I«(, I)

+).-2{aAk+ 1(C -1, 1)+).-2/3bAk+1«(,0, 1)+).-4/3cAk+I«(, 1, I)} +... (30)

where the coefficients a, P... are the known constants composed of the coefficients in eqn
(21) and possess expansions for ).-2, for example

00 00

a = a().) = L a.().-2t, P = P().) = L P.(). -2t·
.=0 n=O

(31)

In a similar way, the formal expansion of the third independent solution to eqn (21),
whose first approximation is t/J&3) shown in eqn (26), is of the form

t/J(3)(C,).) = aBI«(, -I) +). -2/3PB1«(, 0) +). -413yB I«(, I, I) +).- 413 15

+).-2{aB! «(, -1,2) +). -2/3bBI(C 0, 2) +). -413 cB I«(, 1,2)} + . . . (32)

in which the coefficients, except 15, are denoted in terms of the same notations as in eqn (30)
because they are equal to each other.

To derive the formal expansion of the fourth independent solution to eqn (21) whose
first approximation is t/J<04) = I shown in eqn (26), we begin with the nonhomogeneous
equation of the form

(33)

which is obtained by substituting ,W) = I into eqn (24) of n = I.
It is easily seen, by lettingp = I in eqn (A8) and noting eqn (AlO), that -~Bo(',2) is

a particular solution of the nonhomogeneous equation lr[Ou = 1. Thus,

(34)

In a similar way, we can find t/J~4), t/J~4) ... which are expressed in terms of Bo(C, p)
(p = 1,2,3 ...). In addition, we note from eqn (AlO) that Bo(',p) are polynomials in ,.
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Then, by noting eqns (19) and (22) we know that the complete expansion of the fourth
solution must be of the form

OCJ

t/!(4) = t/!(4)(Z, A) = L (A -2)"t/!~4) (z)
n=O

which is a slowly varying function.

3.2. Expansion ofa particular solution
We assume a particular solution to eqn (21) having the form

Substituting eqn (36) into eqn (21) yields a series of equations in the form

(35)

(36)

(37)

(38)

We find from eqns (24), (33) and (35) that the particular solution t/!* has the same expansion
as t/!(4) of the form

OCJ

t/!* = t/!*(z, A) = L (A -2)"t/!:(Z)
n=O

(39)

which is also a slowly varying function. This is totally different than the situation in the
case of axisymmetric loadings where the particular solution was described by the Lomme!
function which is a rapidly varying function [see Clark (1958)].

As mentioned before, all of these solutions are valid only in the vicinity of the transition
point. However, we may reasonably think that they are also uniformly valid in the entire
toroid if the coefficients in them are the unknown functions of z instead of the known
constants. In other words, we will find that such uniformly valid solutions of eqn (17) have
the same expressions as eqns (30), (32), (35) and (39), in which, however, the coefficients
are the unknown functions of z, but the known constants have also the same expansions of
eqn (31).

4. UNIFORMLY VALID EXPANSIONS IN THE ENTIRE TOROID

We only need to determine the coefficients in eqns (30), (32), (35) and (39).

4.1. The first and second homogeneous solutions
Substituting eqn (30) into eqn (17), using eqns (AS), (A2I), (AI2), (A23) and (A24)

then equating the coefficients of Ak+1«(,P,q) (p = -1,0,1; q = 0,1,2 ...) we obtain the
ordinary differential equations in terms of the unknown coefficients in eqn (30). All of these
unknown coefficients can be written in the form of the asymptotic series as eqn (31).
Substituting them into the equations, we then obtain

(40)

(41)

(42)
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(43)

The solution of these equations yields the complete asymptotic expansions within the
accuracy of the theory of thin shells in the form

t/J(k)(C).) = ocOAk+J(C -1)+).-2/3poAk+ J(C,0)+).-4/3YoAk+I(C, 1)+).-2aoAk+ J(C -1, I),

(44)

where

1 {I fZ L (t) } fZ
Po(z) =gz-lexp 2: Jo _Jt - dt Jo M(t)dt

(45)

(46)

(47)

It is argued that oco(z) and Po(z) are analytic at the transition point z = O. In addition,
eqn (42) is the homogeneous counterpart of the membrane equation

(48)

which is obtained by putting A-+ 00 in the fundamental eqn (17). It can be shown that only
one homogeneous solution of eqn (48), specified by 4AO)(z), is analytic at the transition
point z = 0 and the other independent homogeneous solution, specified by </J~O)(z), is
singular at z = O. Moreover, there exists such a particular solution of eqn (48), specified
by </J~)(z), which is analytic at z = o. We let

(49)

4.2. The third homogeneous solution
Similarly, substituting eqn (32) into eqn (17) we obtain the complete expansion of the

third homogeneous solution within the accuracy of the theory of thin shells in the form

It is remarkable that the last term in eqn (50) is a slowly varying function. iXo, Po and Yo
remain to be determined by eqn (45), (46) and (49), respectively. The slowly varying
function Do is a solution of the nonhomogeneous equation

where

~" ~, ~ x(z)
zuo+LJuo+L2UO =­

Z
(51)

Thus,

SAS 31:19-K
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(53)

4.3. The fourth homogeneous solution and the particular solution
It is sufficient to take the leading terms in the expansions (35) and (39) in powers of

A- 2
• Substituting eqns (35) and (39) into eqn (17), we find that the leading terms t/Jt and

t/Jb4) satisfy the membrane eqn (48) and its homogeneous counterpart, respectively. There­
fore, we let

(54)

and

(55)

All of them are slowly varying functions.

5. THE FINAL RESULTS

A general solution of the fundamental eqn (17) is of the form

(56)

where the homogeneous solutions t/J(I), t/J(2), t/J(3) and t/J(4) and the particular solution t/J* are
shown in egns (44), (50), (54) and (55), respectively. Four complex constants Cj will be
determined by eight boundary conditions.

With the knowledge of the general solution, the complex variable Tm will follow from
eqn (16). Then the stress resultants and displacements can be determined using eqns (11)­
(14).

6. COMPARISON

Let m = 1 in eqn (8), the loading becomes

(57)

which is referred to as "wind-type" loading.
Novozhilov (1951) in his monograph has given the asymptotic expressions of the force

and moment resultants and the strains for the general shell of revolution subjected to the
wind·typ~ .loading based on the limit that the special circumferences () = 0 and () = Te are
npt on the shell..Obviously, his expressions are still valid for a segment of toroidal shell
with positive curvature between and away from () = 0 and () = Te.

In the other respects, the results in the present paper are adaptable for the toroidal
shell with any nonsymmetric loadings. Their special case of m = 1 and () =1= 0 and f} =1= Te of
course must coincide with Novozhilov's results.

Novozhilov's results are only first approximation. All the small quantities higher than
order O(j";,) '" Q(fi) in them are omitted. With the same accuracy formula (56) becomes

in which, according to eqns (AI4)-(AI6), A 2 and A 3 are expressed as
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A 2«(. -1) ~1(O,e)[ie(I-I)"'+e-(1-')"']

A3«(, -1) = 1(O,e)[ -ie(l-')"'+e-(I-I)",]

where

(J) = _1_ rJSinO rodO
J2 Joo Roae

and 00 i= 0 is the upper boundary circumference.
Substituting eqns (59)-(61) into eqns (58) and (16) yields

2745

(59)

(60)

(61)

f l= {:2 e~zor3/41(o,e)ao(z)[c\ e-(l-I)"'+C2e(l-I)"']}

+~ (Sin 0)-3/4 [C44>~0)(Z) +4>~)(z)] (62)
a2 az

where

(63)

In the first braces of eqn (62), the coefficient Ija2(sin Ojaz) -3/1'(0, e)ao(z) has to be seen as
a constant, since only the primary term is retained in the derivative of f l with respect to 8.
It can be absorbed by the arbitrary complex constants C1 and C2 • Thus, eqn (62) is rewritten
as

in which

and

t l = f+ r(O) (64)

(65)

(66)

As it can be seen that eqn (65) is the same as Novozhilov's formula (4.13.24) and that eqn
(66) must satisfy the membrane eqn (9) or the membrane eqn (1) replaced with eqns (2)
and (8) and m = 1. The reason of the latter is because C44>~0) + 4>~) satisfies the membrane
eqn (48) and because of eqn (16).

All the stress resultants and stress couples can be obtained by substituting eqn (64)
into eqn (11). As an example we consider

(67)

where
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Jif, (df) 1 Jf,Sine " .--;:;;coseIm de = - fi Ro(J cose{[(CI-C;)cosw-(C;+C~)SlllW]e-W

- [( C; - C~) cos w + (C; + C~) sin w] eW
}. (68)

It can be seen that eqn (68) is identical to Novozhilov's formula (3.14.9) if cos eis replaced
with cote. However, both cose and cote can be absorbed in the arbitrary constants C;,
C{, C; and C~ as mentioned above. Thus, we can see eqn (68) as the same as Novozhilov's
resultant.

In addition, the second summand of eqn (67) is equal to the membrane stress resultant
Mor The real part of the complex constant C4 in MO/ [see eqn (66)] can be determined by
giving the boundary membrane stress resultant

(69)

As for the determination of the imaginary part of C4 , we have to give the boundary shear
stress resultant S*. This is the same as Novozhilov's approach.

Finally, we have

1 Jf,Sine- fi Ro(J cos8{[(C; -C~)cosw-(C;+C~) sinw] e- w

- [(C; - CD cos w+ (C~ + C~) sinw] eW
} +Moi (70)

which is identical to Novozhilov's formulae (3.14.9) or (3.14.22).
Note that there are only four constants C;, C~, C~ and C~ to be determined in the

present case instead of eight constants in the other nonsymmetric cases. This is a special
feature of the wind-type loading on which Novozhilov has made a detailed explanation.

7. CONCLUSIONS

(1) The fact that the particular solution ljJ*(z) satisfies the membrane eqn (48) shows
that nonaxisymmetric loadings are equilibrated totally by membrane stress resultants. This
differs completely from the axisymmetric loading situation in which the axisymmetric
surface loadings are equilibrated by both the membrane stress resultants and the bending
moment.

(2) The existence of the third homogeneous solution ljJ(3) shows that bending moments
exist everywhere in the entire shell and their existence is independent from the loadings but
dependent on the boundary conditions. This is completely different from the axisymmetric
loading situation in which the bending moments existing in the entire toroid are induced
by the loadings.

Acknowledgements-This work was supported by the National Natural Science Foundation of China. Professor
Wei Zhang was in charge of this work. The author gratefully acknowledges him.
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APPENDIX A

Drazin and Reid (1981) have shown that the generalized Airy functions

Bk«(,p) = r t-Pexp «(t-~tJ)dt (k = 1.2,3; p = 0, -1, -2, ...)
L

and

BO«(,P)=-2
1

. r t-Pexp«(t-~tJ)dt (p=0,±1.±2...)
ttl Jlo

are solutions of the differential equation

(IO J -(IO+p-l)u = 0

where the contours are shown in Fig. A I. The derivatives of these solutions satisfy the relation

It is not difficult from eqn (A4) to arrive at the following relations of identical form

lrIOAk«(,p+ I) = -(p+2)Ak«(,p)

lrIOBk«(,p+ I) = - (p+2)Bk«(,p)

and

lrIOBo«(,p+ I) = -(p+2)Bo«(,p)

where

lr = 10 3 -(10-3.

2747

(AI)

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)

Note from eqn (A3) that Bo«(, p) == 0, if p ,,;: 0; otherwise, it is a polynomial in ( of degree p-I which, by
the residue theorem, is simply the coefficient of tp

-
I in the expansion of exp «(t _~tJ). The first few terms of these

polynomials are

Bo«(, I) = I

Bo«(,2) = (

I J I
Bo«(,4) = 3i( -:3

I 4 I
Bo«(,S) = 4i( -:3(

I 5 I 2
Bo«(,6) = 5i( - 6( . (A 10)

It is seen by puttingp = -2 in eqns (A6) and (A7) andp = 0 in eqn (A8), that Ak«(, -I), Bk«(, -I) and Bo«(, I)
(k = I, 2, 3) are non-trivial solutions of the homogeneous equation lrlOu = O. Moreover, we indicate that

Fig. AI. The paths of integration in the t-plane.
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A 2(" -I), A)G, -I), B,(', -I) and Bo(', I) == I are a linearly independent set of solutions, because their
Wronskian is a constant and is given by

(All)

By using eqn (A6) we can immediately obtain the particular integrals of the inhomogeneous equation
TDu = Ak("p) for all values ofp except p = - 2, and have the recursion formula

(AI2)

Thus, for other values of p, Ak("p) can be expressed as a linear combination of Ak("O) and Ak(" ± I) with
polynomial coefficients.

The asymptotic behaviour of Ak({,p) is given by

A,G,p) - LC{,p) C{ e T2u T)

A2(Cp) - iA+C{,p) ({ e T3u T,)

and

CAI3)

-I] [A+(CP)]
-I BoC{,p) ({e Tt>peZ)

-I LC{,p)

(AI4)

where Tk are sectors shown in Fig. A2;

I 00

A±({,p) = ;:(± ly{-12p +l l!4 eH L C± I)Sas(PK- s
2v n s_o

~ = ~(3!2

and

ao(p) = I,

I
a,(p) = -(12p2+24p+5)

2332

I
a2(P) = -(I44p4+ 1344p3+3864p2+3504p+385)+ ....

2'34

The functions Bk({,p) also satisfy eqn (AI2) with Ak({,p) replaced by Bk({,p), Le.

The other important recursion formula is

The asymptotic behaviour of Bk({,p) in Tk is given by

Fig. A2. The sectors for the Airy functions in the '-plane.

(AI5)

(AI6)

(AI7)

(AI8)
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Bk«(,p) - (-1)1-p(-p)!(P-I{1-~(p-I)(P-2)(-J+ ...}.

2749

(A19)

To obtain the particular integrals of the nonhomogeneous equation T[)u = Ak«(, - 2), we consider the third
generalized Airy functions defined by Drazin and Reid (1981) as follows:

(A20)

where k = 1,2,3; P = 0, ± 1, 2 ... ; q = 0, 1,2 ... ; and a branch cut has been placed along the positive real axis
in the I-plane so that 0 .,; phi < 2n. Similarly, the derivatives satisfy the relation

(A21)

The function Ak«(,p, q) are solutions of the nonhomogeneous equation

(A22)

from which we have the recursion formula

(A23)

It is easily seen that

(A24)

The asymptotic expansion of A,«(,p, I) is

The corresponding expansions for A 2{(,p, I) and AJ«(,p, I) then follow from the recursion formula

A 2«(,p, I) = e- 2(P-]).iiJ[A,«(e2..iJ ,p, 1)+~niA,«(e2'i/J,p)]

AJ{(,p, 1) = e2(P-,)../J[A,«(e- 2• iiJ ,p, 1)-~niA,«(e-2,i(J,p)]. (A26)

To deal with the third homogeneous solution we need to use the functions defined by Drazin and Reid (1981)
as follows:

wherek= 1,2,3;p=0, ±1, ±2 ... ;q=0, 1,2 .... Wemaynotethat

Bk{(,p,O) ;:; Bo«(,p) (p = 0, ± 1, ±2 ...)

and

Bk«(,p, 1) ;:; Bk«(,p) (P = 0, -I, -2 ...)

(A27)

(A28)

(A29)

for all values of k. The functions Bk«(,p, q) also satisfy eqns (A21)-(A23) with Ak«(,p, q) replaced by Bk a, p,.q).
The asymptotic expansions of B, (~, p, q) in the sector T] are

00 (3n-1)!
B,«(, I, 1) - -In(-1'+ L __(-J,

,-, 3'n!

where l' is the Euler constant.

APPENDIX B

The coefficients in eqn (17) are as follows:

1 1
L, = - --(cPoz" +2cPoz') sin 8+3cPoz' cos 8]

m4
(1 cPO Z'4

(A30)

(B1)

(B2)
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(B3)

(B4)

and

2

- _Jl_ [(6 -4Jl2 - Jl2m4+5Jl2m2) +2Jlrn2 sin 8- (12 - 2Jl2 +2Jl2m2) sin2 8- 12Jl sin' 8-4Jl2 sin4 8] (B5)
OA Z

/ 4

Gn = - :0; (s;:8rQnmkm2(1 +~)+[(2m2+~)Jl3+3Jl]Sin8

- H(m 2+3)Jl4 +9Jl2] cos 28-¥Jl3sin 38+%Jl4sin48} (B6)

where

and

The expression of G, is omitted.

3 (Sin 8)- 3/4
rPo=m -

uz

. d
( ) = d8 ( ).

(B7)


